N89-16347

COMPARING HOST AND TARGET ENVIRONMENTS FOR DISTRIBUTED ADA PROGRAMS
MARK C. PAULK
SYSTEM DEVELOPMENT CORPORATION
4810 BRADFORD BLVD NW
HUNTSVILLE, AL 35805

Abstract

The Ada* programming 1anguage provides a means of specifying logical concurrency
by using multitasking. Extending the Ada multitasking concurrency mechanism
into a physically concurrent distributed enviromment which imposes its own
requirements can lead to incompatibilities. These problems are discussed.
Using distributed Ada for a target system may be appropriate, but when using
the Ada language in a host enviromment, a multiprocessing model may be more
suitable than retargeting an Ada compiler for the distributed enviroment. The
tradeoffs between multitasking on distributed targets and multiprocessing on
distributed hosts are discussed. Comparisons of the mul titasking and

mul tiprocessing models indicate different areas of application.

Keywords: Ada, distributed processing, mul titasking, mul tiprocessing, Ada
Programming Support Enviromment (APSE), software engineering, computer networks,
interprocess communication.

1. INTRODUCTION

In designing a solution to a real-world problem, the systems analyst is
frequently faced with the fact that the real world functions in terms of
concurrent activities. Many applications are modelled most naturally by
logically concurrent tasks, but most computer languages do not support
concurrency. Even when concurrent activities can be distributed on a computer

network to achieve physical as well as logical concurrency, the designer must
build the interfaces between the physically distributed components of the system
as well as partition on its logically concurrent boundaries.

*Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

£.3.6.1



Recognizing that concurrency is the natural approach to solving many problems,
the Department of Defense (DOD) developed mul titasking as an integral part of
the Ada programming 1anguage specification. Concurrent tasks may communicate
through task activation and termination; they may share global variables; or
the communicating tasks may rendezvous using entry calls and accept statements.
Synchronization between communicating tasks may use selective waits, conditional

entry calls, or timed entry calls [1].

The host/target model was used in designing the framework for Ada enviromments
12,3]. Ada programs are developed on a host computer system. The program is
compiled by a cross-compiler, and the executable modul e downloaded to the target
system on which it is to execute. This model describes the typical softwared
development environment for embedded systems.

A range of options can be considered for the distributed target. Alternatives

to mul ti tasking may be chosen, such as a mul tiprocessing approach relying on an
1/0-oriented interface for interprocess communication. Fully transparent distribu-
tion of the program can be implemented, or, as is more common for most efforts,
only tasks can be distributable. Although the Ada multitasking model intuitively
seems to be the natural model for concurrency in the distributed environment,
Cornhill has suggested that the Ada programs could and should be arbitrarily
distributable J4,5]. Packages and individual blocks of code as well as tasks
should be distributable. Ada programs should be developed using the Ada

mul ti tasking model for 1ogical concurrency regardliess of the underl ying physical
concurrency. The physical distribution of the Ada program can be specified

using a distribution 1anguage which is input to the compiler with the Ada source
code. The tradeoffs between the various alternatives must be carefully
considered before an approach to implementing distributed Ada programs is
selected.

The terms “"task" and "process" are frequently used interchangeably. In this
paper tasks are independent but interacting program components which execute in
parallel. A process is an independent program execution and its context. It is
the basic unit scheduled for execution by the operating system and represents

£.3.6.2



the execution of a program [6]. A single Ada program may contain many tasks,
yet execute as a single process under an operating system which runs many
concurrent independent processes.

2. DISTRIBUTED PROCESSING REQUIREMENTS

Distributed processing may be implemented on radically different types of
architecture. Shared memory architectures have multiple processors sharing one
or more global memories, or processors with local memory may be interconnected
by message-oriented communications 1inks. These message-oriented links may be
strictly point-to-point, or they may have a broadcast or mul ti-drop capability.

Distributed systems may interface by messages, remote procedure calls, rendezvous,
monitors, or shared variables to name a few of the approaches. At the most
fundamental level there are only two classes of communication technology: those
which copy data, e.g., an I/0-oriented approach, and those which reference shared
data, e.g., using global (shared) memory. Interrupts may provide an asynchronous
change of control flow to signal an event or message exchange, or the message
exchange may be referenced synchronously within the process. Various
communications methods may be Tayered on these basic technologies to provide
different access techniques and control flow structures.

There are a number of desirable capabilities for a distributed processing system.
These include:

support for mul tiple readers;

support for multiple writers;

support for multiple indeﬁéndent message streams;

asynchronous input, i.e., a non-blocking receive;

asynchronous output, i.e., a non-blocking send;

support for locking shared memory data structures for mutual exclusion;
control over the scheduling discipline;

access to a system clock;

an interval timer which can asynchronously signal events;

control over the distribution of processes on the network;

£.3.6.3



fault detection and damage assessment.
transparent fault tolerance;

support for mul ticast;

support for broadcast;

security features such as encryption.

Although a feature may be desirable, it may be impractical to implement for
performance reasons. There is a trade-off between performance and desirable
features such as fault tolerance that is application dependent.

Considerations in the area of distributed processor management [7] include

the allocation of processors: static, dynamic, user-defined, or automatic
the atomicity of distribution: packages, tasks, or procedures

possible remote operations: rendezvous, activation/temination, remote
procedure calls, and global variables

remote dependencies and exception handling

general network topics such as encryption, protocols, and fault handling.

There are two extremes to using Ada in the distributed enviromment. One extreme
transparently distributes Ada programs across the distributed enviromment. There
are, however, inherent problems in the Ada model of concurrency when applied to
the distributed enviromment. Although solutions may exist to many, if not all,
of these problem, the performance penalties extracted may render the multitasking
model impractical.

The other extreme follows the mul tiprocessing model in which separate sequential
programs are developed which can be concurrently executed. Ada programs can

use the techniques developed during years of research into distributed processing
issues. The drawback is the loss of the advanced software engineering concepts
intrinsic to the Ada concurrency model . The advantage is that the system designer
is explicitly aware of the underlying distributed architecture.

E.3.6.4



3. DISTRIBUTED ADA PROGRAMS

Impl ementing the Ada concurrency mechanisms on a distributed system is not a
straightforward matter. A number of issues which are of concern in distributed
processing are not adequately addressed by the Ada multitasking capabilities,

and a nunber of assumptions implicit in the definition of Ada tasks do not
necessarily hold true in the distributed environment [8]. The implementation

of physical concurrency may place restraints on the design of logical concurrency,
for example, the use of global variables in the absence of shared memory. These
constraints may be driven by both performance and feasibility restrictions.

The Ada Language Reference Manual indicates that mul titasking can be transparently
implemented on a distributed system [9]. Several features of the language,
howevér, imply a single-memory system [10]. Although entry calls and accept
statements are the primary means of synchronization of tasks, and of communicating
values between tasks, the use of shared variables is also described in the language
specification. Global variables imply a common memory. Access objects as
rendezvous parameters imply a common memory. Many distributed systems, however,

do not support shared memory.

Connection management is not supported. There is no suitable 1anguage construct
to represent a node in the network; therefore distribution of the program cannot
be handled from within the language.

A1l possible constraints on synchronization cannot be expressed using the
rendezvous primitives. The rendezvous provides synchronization points for
communicating tasks. Ada provides only synchronous communication (other than
through shared variables). Asynchronous communication implies nonblocking sends
and receives. This problem can be addressed by inserting a buffering task (also
called agent tasks [11]) between the sender and receiver, but this may impose a
signi ficant degree of overhead.

Condi tional entry calls imply that it can be quickly establ ished whether the
called task has executed the accept and that the queue is empty. Since the
delay statement would be used if a "timed" response was adequate, conditional

£.3.6.5



entry calls will be used by tasks that cannot tolerate excessive delay. When
the called task is on a remote node, timely response becomes a critical - and
unquantified - issue.

Timed entry calls may imply a potential race condition between the rendezvous
and the timeout. Should timeout be measured from the calling or accepting tasks
involved in the rendezvous? If from the calling task, as seems logical, race
conditions may occur where the calling task has aborted a rendezvous that the
accepting task has initiated. If from the accepting task, are the semantics of
the language preserved?

An interval timer capability is not supported. The Ada delay statement guarantees
a minimum delay; the actual time interval can be arbitrarily longer than that
speci fied by the delay statement and still satisfy the semantics of the delay.

Packages STANDARD and SYSTEM need multiple definitions in a heterogeneous
distributed enviromment. This implies an interface to the network presentation
layer and possibly a canonical representation of entities. Assumptions in target-
dependent representation clauses may imply a specific system in a heterogeneous
envi romment,

Fault tolerance is not addressed [12,13]. What happens when a distributed system
has a processor crash? Can a "shadowing" task take over the functionality of a
"dead" task? Can the system degrade gracefully? Ada makes no explicit provision
for continuation. When a processor failure occurs, services and data may be
lost; tasks may be permanently suspended on the surviving processors; and the
context of some tasks may be lost. A replacement task cannot assume the name

of the task it is intended to replace, and there is no provision for redirecting
the communication path used before the failure.

Using Ada in the distributed environment may require extensions to the language
[12), which, by definition, means the Tanguage is no longer Ada. If there are
restrictions on what Ada constructs are distributable, i.e., shared variables
are not permitted, can the compiler be validated? If the compiler generates

E.3.6.6



full Ada for a uniprocessor and a subset for a distributed target, can it pass
validation as a derived compiler based on its uniprocessor mode? The issue of
validating Ada compilers for distributed enviroments is not resolved at this
time. By one philosophy each host/target pair must be validated. Although
validation policy has evolved beyond that point, the question of a distributed
architecture on validation is debatable.

One way of avoiding the entire validation issue and the problems of distribution
is to not support physical concurrency in the compiler. Traditionally,
distributed computer systems have applied some variation of mul tiprocessing.

4. ADA AND MULTIPROCESSING

Mul titasking enters an area traditionally considered the province of the operating
system. In attempting to define the Ada host/target enviromment, the Stoneman
document specifies an Ada Programming Support Enviromment (APSE) to provide a
framework for writing Ada programs [2,3]. Examining the boundaries between an

APSE and the target system reveals several related areas: the Ada language,

the run-time system, the operating system, and the programming support enviromment.
The Kernel Ada Programming Support Enviromment (KAPSE) provides access to the
operating system routines. An APSE provides a multiprocessing host enviromnment
for software developnent. The target's run-time system provides the virtual

machine on which an Ada program runs. Issues which are not specified in the

Ada Tanguage definition and must be addressed by the run-time system include

the broad categories of job scheduling, memory management, security, fault
tolerance, and distributed systems.

In an APSE tool composition implies a need for one Ada program to invoke another
completely separate Ada program [14]. Since the Ada language has no such facility,
support for tool composition must be supported by the KAPSE. An INVOKE_PROGRAM
primitive can suspend the calling program, execute the called program to
completion, and then resume the calling program. The primitive can also be
non-blocking.,

The Common APSE Interface Set (CAIS) attempts to provide a standard host
enviromment for developing host tools [6). The CAIS includes both process

£.3.6.7



initiation and interprocess communication mechanisms. The distributed
enviromment , however, is a deferred topic under the proposed MIL-STD-CAIS. If
the CAIS is extended to address the distributed host enviroment, appl ying the
same mechanisms to the distributed target is straightforward. The distinction
between host and target systems is largely artificial for this instance.

Research in distributed systems has explored many avenues for implementing
concurrency including mul tiprocessing and integrated approaches similar to
multitasking. The most significant problem with the Ada and mul tiprocessing
approach is that it discards the software engineering concepts central to the
language. The strong type checking and information hiding capabilities integral
to Ada are seriously compramised by using message-oriented mechanisms.

Part of the Ada design philosophy is that modularity and abstraction are well-
proven means to overcome natural human limitations in dealing with complexity.
Should a system designer be aware of an underlying distributed system? To provide
the time-critical performance required by the application it may be essential

that the designer have explicit understanding and control of the distributed
system. In other systems which do not have real-time requirements it may be
irrelevant to the system designer how the underl ying hardware implements the
design.

A compromise between these approaches is to develop a pre-processor which takes
as input a single multitasking Ada program and outputs multiple Ada programs
(one per node) that use site-specific mechanisms for interprocessor communication
[15,5]. Such a hybrid approach would provide a portable tool for building
distributed Ada programs. The pre-processor could be written in Ada, accept an
Ada program as its input, and output a set of Ada programs which could then be
compiled for the appropriate target. The pre-processor could use a standard
software communications package which provides a basic message-oriented
networking capability. This package could be reimpl emented for a given
distributed architecture without changing the pre-processor. Proxy tasks could
then be used to handle rendezvous between nodes.

E.3.6.8



5. CONCLUS IONS

fn a real-time embedded target enviromment the expense and complexity of implement-
ing an efficient Ada compiler for a given distributed architecture may be a
comparatively minor issue. A distributed system could be built incorporating
solutions to the problems with distributed multitasking which have been discussed.
Whether such a system could provide adequate response in a hard real-time
enviromment is questionable unless the compiler is customized for a specific
distributed target.

Using the mul tiprocessing approach requires knowl edge of the distributed archi-
tecture at system design. This is not necessarily bad, but current work in
designing distributed computing systems emphasizes deferring a binding of the
system to the architecture. The host enviromment, as opposed to the target
environment, requires an interprogram communications mechanism to aid in tool
composition. The extension of such a mechanism for the distributed enviromment
can provide a portable distributed processing capability.

Combining multitasking and multiprocessing may be the most promising approach,
but the basic problems in distributing Ada programs must still be addressed.
For real-time enviromments the designer must remain aware of the performance
implications of design decisions.

REFERENCES
Paulk, M.C., "Interprocess Communication in Ada," Proceedings of IEEE
Southeastcon '84, April, 1984, pp. 33-35.

— o
. L)

2. "Requirements for Ada Programming Support Enviromments: Stoneman,"
Department of Defense, February 1980.

3. Buxton, J.N., and Druffel, L.E., "Requirements for an Ada Programming
Support Enviromment: Rationale for Stoneman," COMPSAC 80, October, 1980,
pp. 66-72, reprinted in The Ada Programming Langquage: A Tutorial, ed.
S.H. Saib and R.E. Fritz, IEEE Computer Society Press, 1982, IEEE Catalog
No. EHO 202-2.

4. Cornhill, D., "Four Approaches to Partitioning Ada Programs for Execution
on Distributed Targets," Proceedings of the 1984 IEEE Conference on Ada
Applications and Enviromments, pp. 153-162.

E.3.6.9



10.

11.

12.

13.

14,

15.

Cornhill, D., "A Survivable Distributed Computing System for Embedded
Application Programs Written in Ada," ACM Ada Letters, Vol. 3, No. 3,
Nov/Dec 1983, pp. 79-86.

Proposed Military Standard Common APSE Interface Set (CAIS), 31 January
1985.

Lomuto, N., Rajeev, S., and Grover, V. "The Ada Runtime Kit (ARK)," IEEE
Real-time Systems Newsletter, Vol. 2, No. 2, Summer 1984, pp. 27-33.

Paulk, M.C., "Problems with Distributed Ada Programs," Proceedings of the
5th Phoenix Conference on Computer and Communications, 1986, pp. 396-400.

ANSI/MIL-STD-1815A, The Ada Programming Language Reference Manual, American
National Standards Institute, 1983.

Dapra, A., et al, "Using Ada and APSE to Support Distributed Mul timicro-
processor Targets," ACM Ada Letters, Vol. 3, No. 6, May/June 1984, pp
57-65.

Hilfinger, P.N., "Implementation Strategies for Ada Tasking Idioms,"
Proceedings of the AdaTEC Conference on Ada, October, 1982, pp. 26-30.

Knight, J.C., and Urquhart, J.I.A., "On the Impl ementation and Use of Ada
on Faul t-tolerant Distributed Systems," ACM Ada Letters, Vol. 4, No. 3,
Nov/Dec 1984, pp. 53-64.

Knight, J.C., and Gregory, S.T., "A Testbed for Evaluating Faul t-Tolerant
Distributed Systems," submitted to Proceedings of the 14th Conference on
Faul t-Tolerant Computing Systems, June, 1984,

Stenning, V., Froggatt, R.G., et. al., "The Ada Enviroment: A Perspective,"”
IEEE Computer, Vol. 14, No. 6, June, 1981, pp. 26-36.

R.A. Volz, AW. Naylor, et al., "Some Problems in Distributing Real-time
Ada Programs Across Machines," Ada in Use, Proceedings of the Ada
International Conference, May 1985, issued as ACM Ada Letters, Vol. 5,
No. 2, Sept/Oct 1985, pp. 72-84.

£.3.6.10



